March 23, 2017

Efficiency Bulletin: 17-09
Industrywide Coordinated Licensing of 10 CFR 50.69

Establish an industrywide coordinated effort for all sites to submit a license amendment request (LAR) in accordance with 10 CFR 50.69 to allow plants to perform risk-informed categorization and treatment of structures, systems and components as part of a risk-informed engineering program. This coordinated effort will streamline the LAR submittal and approval process by developing a standardized template with review and oversight from an industry coordinating committee to ensure alignment and consistency of the industry LAR submittals. This efficiency bulletin (EB) does not implement 10 CFR 50.69; this facilitates a subsequent EB that will cover implementation aspects.

Addressers: Chief nuclear officers, NEI APCs and INPO APCs

Issue: RIO-01a, Industry-Wide Adoption of Risk Informed Engineering Programs (10 CFR 50.69)

Summary of Efficiency Opportunity

- Desired end-state—All sites have submitted an LAR per 10 CFR 50.69 and are participating in the 50.69 LAR Coordinating Committee.

- Value proposition (vision of excellence)—An industry coordinated effort drives regulatory efficiency in the 50.69 LAR submittal and approval process utilizing a standardized template—reviewed by the Industry 50.69 LAR Coordinating Committee—ensuring alignment and consistency.
Why is it important?—Adoption of 50.69 greatly improves economic performance related to meeting regulatory requirements. Implementation of 50.69 allows sites to realize significant savings and efficiencies in procurement, testing, maintenance and design change control (e.g., 10 CFR 50 Appendix B Requirements would no longer apply). Substantial cost reductions can be realized by removing many components from the scope of 12 regulatory requirements in accordance with 10 CFR 50.69 and the associated NRC-endorsed NEI guidance.

Industry benchmark value(s)—This EB enables 50.69 implementation, which is expected to reduce significant operational costs related to procurement of parts, maintenance, inspections, testing and reporting. Based on industry pilots (STP, Vogtle, Surry, Wolf Creek), 75 percent of safety-related components are expected to be categorized as low safety significant. Specific costs savings are site-specific and based on reactor design, number of systems categorized and the alternative treatments implemented.

Measure of effectiveness—
- Increase the number of submitted LARs.
- Increase the number of approved LARs.
- Reduce the average NRC review and approval time.

Relevant Standards

The following standards are applicable for the implementation phase of the 10 CFR 50.69 license amendment request per this efficiency bulletin:

- INPO 10-005, Principles for Maintaining an Effective Technical Conscience
 - Principle 5: Engineers present technical considerations to decision-makers and insist on conservative decisions related to nuclear safety. They escalate concerns to appropriate levels of management. For decisions related to plant reliability, engineers understand and accept decisions based on facts and appropriate consideration for the potential risks to plant reliability. In all cases, engineers understand that risk-based decision-making may not result in selecting the most conservative option.

- INPO 15-011, Principles for Excellence in Integrated Risk Management
 - Principle 4: A consequence-biased approach is applied to risk determination, and decision-making reflects an intolerance for unacceptable end states.

- Performance Objectives and Criteria (INPO), CO.2
 - Criterion 11: Corporate policy clearly defines unacceptable risk conditions and includes procedures to minimize and manage risk. Integrated risk considerations include, but are not limited to, nuclear, radiological, industrial safety, and environmental safety.

Relevant Regulatory Requirements

- 10 CFR 50.69
- Regulatory Guide 1.201
- Regulatory Guide 1.200 R2

Key to Color Codes:
Red: NSIAC initiative – full participation required for viability
Blue: Action expected at all sites, but is not needed for broad industry viability
Green: Utility discretion to implement, consistent with its business environment
Guidance

- Attachment 1: Industry 50.69 LAR Template and template completion guidance
 - The template may require future revisions based on regulatory feedback; therefore, a living version of the LAR template will be maintained by the Industry 50.69 LAR Coordinating Committee
- Attachment 2: Industry 50.69 LAR Coordinating Committee charter and process description
- NEI 05-04/07-12/12-06 Appendix X: Close Out of Facts and Observations (F&Os)
- NEI 00-04, 10 CFR 50.69 SSC Categorization Guidance

Recommended Industry Actions

- Confirm minimum requirements are met for a submission per NEI 00-04 and 10 CFR 50.69.
- Coordinate and communicate target submission date with 50.69 LAR Coordinating Committee.
- Identify representative(s) to participate on 50.69 LAR Coordinating Committee.
- Conduct F&O Closure Process on those PRA models used in the submission.
- Develop LAR for 50.69 using standard template.
- Have coordinating committee complete consistency review of LAR.
- Submit LAR for NRC review and approval.

Change Management Considerations

Industry Activities

- Industry webinar to provide background for initiative, industry peer discussion, and provide an open forum to clarify expectations and ask questions. Webinar information can be found at https://web.inpo.org/Pages/Nuclear-Promise-Issues.aspx
- NEI to collect expected LAR submission dates from all utilities.
- NEI to lead 50.69 LAR Coordinating Committee in accordance with Attachment 2.
- NEI to develop and issue NEI 16-09, Risk Informed Engineering Programs (50.69) Implementation Guidance (estimated issue date: second quarter 2017).

Company Actions

- Provide utility and station leadership training on 50.69: What it is, how it is beneficial and how licensees adopt it, including supporting culture that promotes risk awareness and effective risk management (ref. INPO 15-011).
- Participate in the 50.69 LAR Coordinating Committee in accordance with Attachment 2.

Guiderails

- The 50.69 LAR coordinating committee will be reviewing submittals and monitoring NRC responses to ensure content and format of LAR submittals are consistent across industry through the use of the LAR template.
- Communication of any issues will be distributed to all utility participants.
- Coordinate responses to NRC RAIs with coordinating committee.
- This EB does not implement 10 CFR 50.69. Implementation and alternative treatments will be described in a subsequent, related efficiency bulletin associated with guidance and processes to detect and monitor unintended consequences during implementation.
Report Your Site’s Results

Please report your company’s implementation of this improvement opportunity, including the date of completion. Send this information along with your company point of contact to EfficiencyBulletin@NEI.org.

Industry Contacts
- Industry champion for this issue: Heather Szews, 980-373-2488, heather.szews@duke-energy.com
- EPRI contact: John Weglian, 704-595-2763, jweglian@epri.com
- INPO contact: Sudesh Gambhir, 770-644-8213, gambhirsk@inpo.org
- NEI contact: Thomas Zachariah, 202-739-8058, txz@nei.org
- On the web: www.nei.org/bulletin1709

Industry Approval:

Bob Bement, CNO Lead

[Signature]

David P. Igyarto, Institute of Nuclear Power Operations

[Signature]
The purpose of this attachment is to provide a streamlined template for licensees to utilize when preparing a 10 CFR 50.69 application submittal. It is intended that a license amendment request (LAR) that follows this template conforms to the requirements of 10 CFR 50.69(b)(2) and 50.90. 10 CFR 50.69(b)(2) states:

A licensee voluntarily choosing to implement this section shall submit an application for license amendment under § 50.90 that contains the following information:

(i) A description of the process for categorization of RISC–1, RISC–2, RISC–3 and RISC–4 SSCs.

(ii) A description of the measures taken to assure that the quality and level of detail of the systematic processes that evaluate the plant for internal and external events during normal operation, low power, and shutdown (including the plant-specific probabilistic risk assessment (PRA), margins-type approaches, or other systematic evaluation techniques used to evaluate severe accident vulnerabilities) are adequate for the categorization of SSCs.

(iii) Results of the PRA review process conducted to meet § 50.69(c)(1)(i).

(iv) A description of, and basis for acceptability of, the evaluations to be conducted to satisfy § 50.69(c)(1)(iv). The evaluations must include the effects of common cause interaction susceptibility, and the potential impacts from known degradation mechanisms for both active and passive functions, and address internally and externally initiated events and plant operating modes (e.g., full power and shutdown conditions).

The above requirements are detailed and addressed in the technical evaluation section of this template. The intent of this template is to be concise but comprehensive as well as flexible. Below is an explanation of the different levels of guidance provided by this template, their intent and how they are formatted throughout the document.

Boiler Plate Text: This text is intended to be used in all cases

Optional Text: This text intended to be used optionally depending on whether it reflects the situation of the licensee.

[Licensee To Insert Text]: This text is intended to identify where the licensee should insert plant specific information. These place holders should be deleted prior to the completion of the submittal.

Example Text: This text is intended to only provide guidance on the level of detail expected in the plant specific information. This text should be deleted prior to the completion of the submittal.
Preparer Notes: This text is intended to provide additional guidance to the preparer of the license amendment request. This text should be deleted prior to the completion of the submittal.
[DATE]

U. S. Nuclear Regulatory Commission
Washington, DC 20555-0001
ATTN: Document Control Desk

SUBJECT:
[PLANT NAME]
DOCKET NO.
50-[xxx]
Application to adopt 10 CFR 50.69, "Risk-informed categorization and treatment of structures, system, and components (SSCs) for nuclear power plants”

In accordance with the provisions of 10 CFR 50.69 and 10 CFR 50.90, [LICENSEE] is requesting an amendment to the license of [PLANT NAME, UNIT NOS.].

The proposed amendment would modify the licensing basis to allow for the implementation of the provisions of Title 10 of the Code of Federal Regulations (10 CFR), Part 50.69, “Risk-Informed Categorization and Treatment of Structures, Systems, and Components (SSCs) for Nuclear Power Plants.” The provisions of 10 CFR 50.69 allow adjustment of the scope of equipment subject to special treatment controls (e.g., quality assurance, testing, inspection, condition monitoring, assessment, and evaluation). For equipment determined to be of low safety significance, alternative treatment requirements can be implemented in accordance with this regulation. For equipment determined to be of high safety significance, requirements will not be changed or will be enhanced. This allows improved focus on equipment that has safety significance resulting in improved plant safety.

The enclosure to this letter provides the basis for the proposed change to the [PLANT NAME, UNIT NOS.] Operating Licenses. The categorization process being implemented through this change is consistent with NEI 00-04, “10 CFR 50.69 SSC Categorization Guideline,” Revision 0 dated July 2005 which was endorsed by the NRC in Regulatory Guide 1.201, "Guidelines for Categorizing Structures, Systems, and Components in Nuclear Power Plants According to their Safety Significance", Revision 1 dated May 2006. Attachment 1 of the enclosure provides a list of categorization prerequisites. Use of the categorization process on a plant system will only occur after these prerequisites are met.

[PREPARER’S NOTE: If applicable, one of the three following paragraphs is recommended in order to provide assurance to the NRC that the submittal of 10 CFR 50.69 is NOT “linked” to other submittals. Also, this can also serve as a suggestion to the NRC that it is possible to streamline the review of the PRA model in this application]
using the approval from a previous risk-informed application such as TSTF-505 or TSTF-425 or streamline the review of the PRA model for a future submittal that will be utilizing the same models. This discussion is also included in Section 3 of the Enclosure.

The NRC has previously reviewed the technical adequacy of the [PLANT NAME] Probabilistic Risk Assessment (PRA) model identified in this application for:

- [purpose] in [identify previous application where the PRA model technical adequacy was reviewed by the NRC, including date and ADAMS Accession Number]. [LICENSEE] requests that the NRC utilize the review of the PRA technical adequacy for that application when performing the review for this application.
- [List any additional applications using these models]

Or

[LICENSEE] intends to submit a separate license amendment request for [identify application] within the next [X months] using the same PRA model[s] described in this Enclosure. [LICENSEE] requests that the NRC coordinate their review of the PRA technical adequacy description in Section 3.2 and 3.3 of this enclosure for both applications. This would reduce the number of [LICENSEE] and NRC resources necessary to complete the review of the applications. This request should not be considered a linked requested licensing action (RLA), as the details of the PRA models in each LAR are complete which will allow the NRC staff to independently review and approve each LAR on their own merits without regard to the results from the review of the other.

Or

The PRA model[s] described within this LAR are the same as those described within the [LICENSEE] submittal of the LAR dated [DATE] for [identify application] (ADAMS Accession Number [ML NUMBER]), with routine maintenance updates applied. [LICENSEE] requests that the NRC conduct their review of the PRA technical adequacy details for this application in coordination with the review of the application currently in-process. This would reduce the number of [LICENSEE] and NRC resources necessary to complete the review of the applications. This request should not be considered a linked requested licensing action (RLA), as the details of the PRA models in each LAR are complete which will allow the NRC staff to independently review and approve each LAR on their own merits without regard to the results from the review of the other.

[LICENSEE] requests approval of the proposed license amendment by [DATE], with the amendment being implemented [BY DATE OR WITHIN X DAYS].
In accordance with 10 CFR 50.91, a copy of this application, with attachments, is being provided to the [designated STATE Official].

In accordance with 10 CFR 50.30(b), a license amendment request must be executed in a signed original under oath or affirmation. This can be accomplished by attaching a notarized affidavit confirming the signature authority of the signatory, or by including the following statement in the cover letter. The alternative statement is pursuant to 28 USC 1746. It does not require notarization.

This letter contains no NRC commitments OR a License Condition and/or NRC commitments described in Attachment 1 to the Enclosure.”

This letter contains no NRC commitments.

If you should have any questions regarding this submittal, please contact [NAME, TELEPHONE NUMBER].

I declare under penalty of perjury that the foregoing is true and correct. Executed on [DATE].

Executed on [DATE].

Sincerely,

Signature

Enclosure:

1. Evaluation of the Proposed Change

cc: [NRC Project Manager
NRC Regional Office
NRC Resident Inspector
State Contact]
Enclosure
Evaluation of the Proposed Change

TABLE OF CONTENTS

1 SUMMARY DESCRIPTION .. 13
2 DETAILED DESCRIPTION .. 13
 2.1 CURRENT REGULATORY REQUIREMENTS ... 13
 2.2 REASON FOR PROPOSED CHANGE ... 14
 2.3 DESCRIPTION OF THE PROPOSED CHANGE ... 15
3 TECHNICAL EVALUATION .. 16
 3.1 CATEGORIZATION PROCESS DESCRIPTION (10 CFR 50.69(b)(2)(i)) ... 17
 3.1.1 Overall Categorization Process ... 17
 3.1.2 Passive Categorization Process ... 19
 3.2 TECHNICAL ADEQUACY EVALUATION (10 CFR 50.69(b)(2)(ii)) ... 21
 3.2.1 Internal Events and Internal Flooding ... 21
 3.2.2 Fire Hazards ... 21
 3.2.3 Seismic Hazards ... 22
 3.2.4 Other External Hazards ... 24
 3.2.5 Low Power & Shutdown ... 25
 3.2.6 PRA Maintenance and Updates ... 26
 3.2.7 PRA Uncertainty Evaluations ... 26
 3.3 PRA REVIEW PROCESS RESULTS (10 CFR 50.69(b)(2)(iii)) ... 28
 3.4 RISK EVALUATIONS (10 CFR 50.69(b)(2)(iv)) ... 29
4 REGULATORY EVALUATION .. 30
 4.1 APPLICABLE REGULATORY REQUIREMENTS/Criteria ... 30
 4.2 NO SIGNIFICANT HAZARDS CONSIDERATION ANALYSIS .. 30
 4.3 CONCLUSIONS .. 32
5 ENVIRONMENTAL CONSIDERATION .. 33
6 REFERENCES .. 34
LIST OF ATTACHMENTS

Attachment 1: List of Categorization Prerequisites .. 35
Attachment 2: Description of PRA Models Used in Categorization 37
Attachment 3: Changes to Fire Induced Vulnerability Evaluation (FIVE) 38
Attachment 4: Changes to Seismic SPCL .. 39
Attachment 5: Disposition and Resolution of Open Peer Review Findings and Self-Assessment Open Items ... 40
Attachment 6: External Hazards Screening .. 42
Attachment 7: Progressive Screening Approach for Addressing External Hazards 46
1 Summary Description

The proposed amendment would modify the licensing basis to allow for the implementation of the provisions of Title 10 of the Code of Federal Regulations (10 CFR), Part 50.69, “Risk-Informed Categorization and Treatment of Structures, Systems, and Components (SSCs) for Nuclear Power Plants.” The provisions of 10 CFR 50.69 allow adjustment of the scope of equipment subject to special treatment controls (e.g., quality assurance, testing, inspection, condition monitoring, assessment, and evaluation). For equipment determined to be of low safety significance, alternative treatment requirements can be implemented in accordance with this regulation. For equipment determined to be of high safety significance, requirements will not be changed or will be enhanced. This allows improved focus on equipment that has safety significance resulting in improved plant safety.

2 DETAILED DESCRIPTION

2.1 CURRENT REGULATORY REQUIREMENTS

The Nuclear Regulatory Commission (NRC) has established a set of regulatory requirements for commercial nuclear reactors to ensure that a reactor facility does not impose an undue risk to the health and safety of the public, thereby providing reasonable assurance of adequate protection to public health and safety. The current body of NRC regulations and their implementation are largely based on a "deterministic" approach.

This deterministic approach establishes requirements for engineering margin and quality assurance in design, manufacture, and construction. In addition, it assumes that adverse conditions can exist (e.g., equipment failures and human errors) and establishes a specific set of design basis events (DBEs). The deterministic approach then requires that the facility include safety systems capable of preventing or mitigating the consequences of those DBEs to protect public health and safety. Those SSCs necessary to defend against the DBEs are defined as "safety-related," and these SSCs are the subject of many regulatory requirements, herein referred to as “special treatments,” designed to ensure that they are of high quality and high reliability, and have the capability to perform during postulated design basis conditions. Treatment includes, but is not limited to, quality assurance, testing, inspection, condition monitoring, assessment, evaluation, and resolution of deviations. The distinction between "treatment" and "special treatment" is the degree of NRC specification as to what must be implemented for particular SSCs or for particular conditions. Typically, the regulations establish the scope of SSCs that receive special treatment using one of three different terms: "safety-related," "important to safety," or "basic component." The terms "safety-related "and "basic component" are defined in the regulations, while "important to safety," used principally in the general design criteria (GDC) of Appendix A to 10 CFR Part 50, is not explicitly defined.
2.2 REASON FOR PROPOSED CHANGE

A probabilistic approach to regulation enhances and extends the traditional deterministic approach by allowing consideration of a broader set of potential challenges to safety, providing a logical means for prioritizing these challenges based on safety significance, and allowing consideration of a broader set of resources to defend against these challenges. In contrast to the deterministic approach, Probabilistic Risk Assessments (PRAs) address credible initiating events by assessing the event frequency. Mitigating system reliability is then assessed, including the potential for common cause failures. The probabilistic approach to regulation is an extension and enhancement of traditional regulation by considering risk in a comprehensive manner.

To take advantage of the safety enhancements available through the use of PRA, in 2004 the NRC published a new regulation, 10 CFR 50.69. The provisions of 10 CFR 50.69 allow adjustment of the scope of equipment subject to special treatment controls (e.g., quality assurance, testing, inspection, condition monitoring, assessment, and evaluation). For equipment determined to be of low safety significance, alternative treatment requirements can be implemented in accordance with the regulation. For equipment determined to be of high safety significance, requirements will not be changed or will be enhanced. This allows improved focus on equipment that has safety significance resulting in improved plant safety.

The rule contains requirements on how a licensee categorizes SSCs using a risk-informed process, adjusts treatment requirements consistent with the relative significance of the SSC, and manages the process over the lifetime of the plant. A risk-informed categorization process is employed to determine the safety significance of SSCs and place the SSCs into one of four risk-informed safety class (RISC) categories. The determination of safety significance is performed by an integrated decision-making process, as described by NEI 00-04, “10 CFR 50.69 SSC Categorization Guideline” (Reference 1), which uses both risk insights and traditional engineering insights. The safety functions include the design basis functions, as well as functions credited for severe accidents (including external events). Special or alternative treatment for the SSCs is applied as necessary to maintain functionality and reliability, and is a function of the SSC categorization results and associated bases. Finally, periodic assessment activities are conducted to make adjustments to the categorization and/or treatment processes as needed so that SSCs continue to meet all applicable requirements.

The rule does not allow for the elimination of SSC functional requirements or allow equipment that is required by the deterministic design basis to be removed from the facility. Instead, the rule enables licensees to focus their resources on SSCs that make a significant contribution to plant safety. For SSCs that are categorized as high safety significant, existing treatment requirements are maintained or enhanced. Conversely, for SSCs that do not significantly contribute to plant safety on an individual basis, the rule allows an alternative risk-informed approach to treatment that provides
reasonable, though reduced, level of confidence that these SSCs will satisfy functional requirements.

Implementation of 10 CFR 50.69 will allow [LICENSEE] to improve focus on equipment that has safety significance resulting in improved plant safety.

2.3 DESCRIPTION OF THE PROPOSED CHANGE

[LICENSEE] proposes the addition of the following condition to the operating license[s] of [PLANT/UNIT] to document the NRC's approval of the use 10 CFR 50.69.

[LICENSEE] is approved to implement 10 CFR 50.69 using the processes for categorization of Risk-Informed Safety Class (RISC)-1, RISC-2, RISC-3, and RISC-4 structures, systems, and components (SSCs) specified in the license amendment dated [DATE].

Prior NRC approval, under 10 CFR 50.90, is required for a change to the categorization process specified above (e.g., change from a seismic margins approach to a seismic probabilistic risk assessment approach).

If any items from Attachment 1 should apply as license conditions
The licensee shall complete the numbered items [Identify Items] listed in Attachment 1, List of Categorization Prerequisites, of [LICENSEE] letter [ML Number], dated [DATE], prior to implementation.
3 TECHNICAL EVALUATION

10 CFR 50.69 specifies the information to be provided by a licensee requesting adoption of the regulation. This request conforms to the requirements of 10 CFR 50.69(b)(2), which states:

A licensee voluntarily choosing to implement this section shall submit an application for license amendment under § 50.90 that contains the following information:

(i) A description of the process for categorization of RISC-1, RISC-2, RISC-3 and RISC-4 SSCs.

(ii) A description of the measures taken to assure that the quality and level of detail of the systematic processes that evaluate the plant for internal and external events during normal operation, low power, and shutdown (including the plant-specific probabilistic risk assessment (PRA), margins-type approaches, or other systematic evaluation techniques used to evaluate severe accident vulnerabilities) are adequate for the categorization of SSCs.

(iii) Results of the PRA review process conducted to meet § 50.69(c)(1)(i).

(iv) A description of, and basis for acceptability of, the evaluations to be conducted to satisfy § 50.69(c)(1)(iv). The evaluations must include the effects of common cause interaction susceptibility, and the potential impacts from known degradation mechanisms for both active and passive functions, and address internally and externally initiated events and plant operating modes (e.g., full power and shutdown conditions).

Each of these submittal requirements are addressed in the proceeding sections.

[PREPARER’S NOTE: If applicable, one of the three following paragraphs is recommended in order to provide assurance to the NRC that the submittal of 10 CFR 50.69 is NOT “linked” to other submittals. Also, this can also serve as a suggestion to the NRC that it is possible to streamline the review of the PRA model in this application using the approval from a previous risk-informed application such as TSTF-505 or TSTF 425 or streamline the review of the PRA model for a future submittal that will be utilizing the same models. This is a duplicate of the preparer’s note in the cover letter].

The NRC has previously reviewed the technical adequacy of the [PLANT NAME] Probabilistic Risk Assessment (PRA) model identified in this application for:

- [purpose] in [identify previous application where the PRA model technical adequacy was reviewed by the NRC, including date and ADAMS Accession Number]. [LICENSEE]
requests that the NRC utilize the review of the PRA technical adequacy for that application when performing the review for this application.

- [List any additional applications using these models]

Or

[LICENSEE] intends to submit a separate license amendment request for [identify application] within the next [X months] using the same PRA model[s] described in this Enclosure. [LICENSEE] requests that the NRC coordinate their review of the PRA technical adequacy description in Section 3.2 and 3.3 of this enclosure for both applications. This would reduce the number of [LICENSEE] and NRC resources necessary to complete the review of the applications. This request should not be considered a linked requested licensing action (RLA), as the details of the PRA models in each LAR are complete which will allow the NRC staff to independently review and approve each LAR on their own merits without regard to the results from the review of the other.

Or

The PRA model[s] described within this LAR are the same as those described within the [LICENSEE] submittal of the LAR dated [DATE] for [identify application] (ADAMS Accession Number [ML NUMBER]), with the same routine maintenance updates applied. [LICENSEE] requests that the NRC conduct their review of the PRA technical adequacy details for this application in coordination with the review of the application currently in-process. This would reduce the number of [LICENSEE] and NRC resources necessary to complete the review of the applications. This request should not be considered a linked requested licensing action (RLA), as the details of the PRA models in each LAR are complete which will allow the NRC staff to independently review and approve each LAR on their own merits without regard to the results from the review of the other.

3.1 CATEGORIZATION PROCESS DESCRIPTION (10 CFR 50.69(b)(2)(I))

3.1.1 Overall Categorization Process

[LICENSEE] will implement the risk categorization process in accordance with the NEI 00-04, Revision 0, as endorsed by RG 1.201, “Guidelines for Categorizing Structures, Systems, and Components in Nuclear Power Plants According to their Safety Significance,” (Reference 2). NEI 00-04 Section 1.5 states “Due to the varying levels of uncertainty and degrees of conservatism in the spectrum of risk contributors, the risk significance of SSCs is assessed separately from each of five risk perspectives and used to identify SSCs that are potentially safety- significant.” Separate evaluation is appropriate to avoid reliance on a combined result that may mask the results of individual risk contributors.
The following are clarifications to be applied to the NEI 00-04 categorization process:

- The Integrated Decision-making Panel (IDP) will be composed of a group of at least five experts who collectively have expertise in plant operation, design (mechanical and electrical) engineering, system engineering, safety analysis, and probabilistic risk assessment. At least three members of the IDP will have a minimum of five years of experience at the plant, and there will be at least one member of the IDP who has worked on the modeling and updating of the plant-specific PRA for a minimum of three years.

- The IDP will be trained in the specific technical aspects and requirements related to the categorization process. Training will address at a minimum the purpose of the categorization; present treatment requirements for SSCs including requirements for design basis events; PRA fundamentals; details of the plant specific PRA including the modeling, scope, and assumptions, the interpretation of risk importance measures, and the role of sensitivity studies and the change-in-risk evaluations; and the defense-in-depth philosophy and requirements to maintain this philosophy.

- The decision criteria for the IDP for categorizing SSCs as safety significant or low safety-significant pursuant to § 50.69(f)(1) will be documented in [LICENSEE] procedures. Decisions of the IDP will be arrived at by consensus. Differing opinions will be documented and resolved, if possible. If a resolution cannot be achieved concerning the safety significance of an SSC, then the SSC will be classified as safety-significant.

- Passive characterization will be performed using the processes described in Section 3.1.2.

- An unreliability factor of 3 will be used for the sensitivity studies described in Section 8 of NEI 00-04. The factor of 3 was chosen as it is representative of the typical error factor of basic events used in the PRA model.

- [LICENSEE] will require that if any SSC is identified as high safety significant (HSS) from either the integrated PRA component safety significance assessment (Section 5 of NEI 00-04) or the defense-in-depth assessment (Section 6 of NEI 00-04), the associated system function(s) would be identified as HSS.

- Once a system function is identified as HSS, then all the components that support that function are preliminary HSS. The Integrated Decision-making Panel (IDP) must intervene to assign any of these HSS Function components to LSS.

The following are the exceptions taken to the NEI 00-04 categorization process:

- NEI-00-04, Section 9.2.2 states that for those safety related functions that have been identified as candidate low safety significant, the IDP should perform a risk-
informed assessment of the categorization by considering each of the seven listed criteria. [LICENSEE] intends to perform this assessment for all system functions at the beginning of the categorization process, after all system functions have been identified. Any system function that cannot be justified as LSS based on consideration of each of the seven criteria will be categorized as HSS. With regard to the criteria that considers whether the active function is called out or relied upon in the plant Emergency/Abnormal Operating Procedures, [LICENSEE] will not take credit for alternate means unless the alternate means are proceduralized and included in Licensed Operator training.

- [Example: Use of risk approach not described in NEI 00-04]

The risk analysis being implemented for each hazard is described:

- Internal Event Risks: Internal events including internal flooding PRA model version [utility version and date] [accepted by NRC for TSTF 505 or other application, date, ML # (Reference X)].
- Fire Risks: Fire induced vulnerability evaluation (FIVE) [accepted by NRC SER dated xx, ML # (Reference X)]. OR Fire PRA model version [utility version and date] [accepted by NRC for NFPA 805 or other application dated xx, ML # (Reference X)].
- Seismic Risks: Success Path Component List (SPCL) from the IPEEE seismic analysis [accepted by NRC SER dated xx, ML # (Reference X)] OR Seismic PRA model version [utility version and date].
- Other External Risks (e.g., tornados, external floods, etc.): External [hazard] PRA model version [utility version and date]. AND/OR Using the IPEEE screening process as approved by NRC SER dated [dated xx, ML # (Reference X)] the other external hazards were determined to be insignificant contributors to plant risk.
- Low Power and Shutdown Risks: Qualitative defense-in-depth (DID) shutdown model for shutdown configuration risk management (CRM) based on the framework for DID provided in NUMARC 91-06, “Guidance for Industry Actions to Assess Shutdown Management” (Reference 3), which provides guidance for assessing and enhancing safety during shutdown operations.

A change to the categorization process that is outside the bounds specified above (e.g., change from a seismic margins approach to a seismic probabilistic risk assessment approach) will not be used without prior NRC approval. The SSC categorization process documentation should include the following elements:

1. Program procedures used in the categorization
2. System functions, identified and categorized with the associated bases
3. Mapping of components to support function(s)
4. PRA model results, including sensitivity studies
5. Hazards analyses, as applicable
6. Passive categorization results and bases
7. Categorization results including all associated bases and RISC classifications
8. Component critical attributes
9. Results of period reviews and SSC performance evaluations
10. IDP meeting minutes and qualification/training records for the IDP members

3.1.2 Passive Categorization Process

For the purposes of 10 CFR 50.69 categorization, passive components are those components that have a pressure retaining function. Passive components and the passive function of active components will be evaluated using the Risk-Informed Repair/Replacement Activities (RI-RRA) methodology consistent with the Safety Evaluation Report (SER) by the Office of Nuclear Reactor Regulation "Request for Alternative ANO2-R&R-004, Revision 1, Request to Use Risk-informed Safety Classification and Treatment for Repair/Replacement Activities in Class 2 and 3 Moderate and High Energy Systems, Third and Fourth 10-Year In-service Inspection Intervals", dated April 22, 2009 (ML090930246). The RI-RRA methodology is a risk-informed safety classification and treatment program for repair/replacement activities (RI-RRA methodology) for pressure retaining items and their associated supports. In this method, the component failure is assumed with a probability of 1.0 and only the consequence evaluation is performed. It additionally applies deterministic considerations (e.g., defense in depth, safety margins) in determining safety significance. Component supports are assigned the same safety significance as the highest passively ranked component within the bounds of the associated analytical pipe stress model.

The use of this method was previously approved to be used for a 10 CFR 50.69 application by NRC in the final Safety Evaluation for Vogtle dated December 17, 2014 (Reference X). The RI-RRA method as approved for use at Vogtle for 10 CFR 50.69 does not have any plant specific aspects and is generic. It relies on the conditional core damage and large early release probabilities associated with postulated ruptures. Safety significance is generally measured by the frequency and the consequence of the event. However, this RI-RRA process categorizes components solely based on consequence, which measures the safety significance of the passive component given that it ruptures. This approach is conservative compared to including the rupture frequency in the categorization as this approach will not allow the categorization of SSCs to be affected by any changes in frequency due to changes in treatment. Therefore, the RI-RRA methodology for passive categorization is acceptable and appropriate for use at [PLANT NAME] for 10 CFR 50.69.
3.2 TECHNICAL ADEQUACY EVALUATION (10 CFR 50.69(b)(2)(II))

The following sections demonstrate that the quality and level of detail of the processes used in categorization of SSCs are adequate. All the PRA models described below have been peer reviewed and there are no PRA upgrades that have not been peer reviewed. The PRA models credited in this request are the same PRA models credited in the [TSTF-505-A application dated July 31, 2015 ADAMS Accession Number ML15218AXXX (Reference X)] with routine maintenance updates applied.

3.2.1 Internal Events and Internal Flooding

The [PLANT NAME] categorization process for the internal events and flooding hazard [LICENSEE] will use the plant-specific PRA model. The [LICENSEE] risk management process ensures that the PRA model used in this application reflects the as-built and as-operated plant for each of the [PLANT] units. Attachment 2 at the end of this enclosure identifies the applicable internal events and internal flooding PRA models.

3.2.2 Fire Hazards

Option 1

The [PLANT NAME] categorization process will use the Fire Induced Vulnerability Evaluation (FIVE) analysis performed for the Individual Plant Evaluation-External Events (IPEEE) in response to GL 88-20 (Reference 6) for evaluation of safety significance related to Internal Fire Hazards. The use of the FIVE analysis as a screening process is a conservative approach compared to use of a fire PRA since the NEI 00-04 approved approach identifies all system functions and associated SSCs that are involved in the mitigation of any unscreened fire scenario (i.e., retained for consideration in the FIVE analysis) as HSS. In addition, all screened scenarios are reviewed to identify any system functions and associated SSCs that would result in a scenario being unscreened, if that system functions and associated SSCs were not credited. Since the analysis is being used as a screening tool, the FIVE importance measures are not used to determine safety significance.

An evaluation was performed of the as-built, as-operated plant against the fire scenarios identified in the FIVE analysis, which determined that there have been no changes in the mitigation function of equipment for any unscreened fire scenarios. In addition, screened scenarios were reviewed and no credited functions or SSCs required to perform those functions have been affected. The [LICENSEE] risk management program ensures that future changes to the plant will be evaluated to determine their impact on the FIVE analysis and risk categorization process.

Option 2
The [PLANT NAME] categorization process will use the Fire Induced Vulnerability Evaluation (FIVE) analysis performed for the Individual Plant Evaluation-External Events (IPEEE) in response to GL 88-20 (Reference 6) for evaluation of safety significance related to internal fire hazards. The use of the FIVE analysis as a screening process is a conservative approach compared to use of a fire PRA since the NEI 00-04 approved approach identifies all system functions and associated SSCs that are involved in the mitigation of any unscreened fire scenario (i.e., retained for consideration in the FIVE analysis) as HSS. In addition, all screened scenarios are reviewed to identify any system functions and associated SSCs that would result in a scenario being unscreened, if that system functions and associated SSCs were not credited. Since the analysis is being used as a screening tool, the FIVE importance measures are not used to determine safety significance.

An evaluation was performed of the as-built, as-operated plant against the fire scenarios identified in the FIVE analysis and changes to the screening analysis, plant changes impacting the FIVE analysis, and mitigation features are identified in Attachment X. In addition, screened scenarios were reviewed and changes to credited functions or SSCs required to perform those functions are also identified in Attachment X. The [LICENSEE] risk management program ensures that future changes to the plant will be evaluated to determine their impact on the FIVE analysis and risk categorization process.

Option 3

The [PLANT NAME] categorization process for fire hazards will use a peer reviewed plant-specific fire PRA model. The [LICENSEE] risk management process ensures that the PRA model used in this application reflects the as-built and as-operated plant for each of the [PLANT] units. Attachment X at the end of this enclosure identifies the applicable Fire PRA model.

3.2.3 Seismic Hazards

Option 1

The [PLANT NAME] categorization process will use the seismic margins analysis (SMA) performed for the Individual Plant Evaluation-External Events (IPEEE) in response to GL 88-20 (Reference 6) for evaluation of safety significance related to seismic hazards. An evaluation was performed of the as-built, as-operated plant against the SPCL identified in the SMA which determined that there have been no changes to the success paths. No plant specific approaches were utilized in development of the SMA. The use of the SMA SPCL as a screening process is a conservative approach compared
to use of a seismic PRA since the NEI 00-04 approved approach identifies all system functions and associated SSCs that are involved in the seismic margin success path as HSS. Since the analysis is being used as a screening tool, the SMA importance measures are not used to determine safety significance. A seismic PRA would credit the same SSCs so some may avoid being identified as HSS using a PRA approach. However, the NEI 00-04 approach using the SPCL would identify them as HSS regardless of their capacity, frequency of challenge or level of functional diversity.

The [LICENSEE] risk management program ensures that future changes to the plant will be evaluated to determine their impact on the SMA and risk categorization process.

Option 2

The [PLANT NAME] categorization process will use the seismic margins analysis (SMA) performed for the Individual Plant Evaluation-External Events (IPEEE) in response to GL 88-20 (Reference 6) for evaluation of safety significance related to seismic hazards. An evaluation was performed of the as-built, as-operated plant against the SPCL identified in the SMA and changes to the success paths, screening analysis, plant changes impacting the SMA analysis, and mitigation features are identified in Attachment X. No plant specific approaches were utilized in development of the SMA. The use of the SMA SPCL as a screening process is a conservative approach compared to use of a seismic PRA since the NEI 00-04 approved approach identifies all system functions and associated SSCs that are involved in the seismic margin success path as HSS. Since the analysis is being used as a screening tool, the SMA importance measures are not used to determine safety significance. A seismic PRA would credit the same SSCs so some may avoid being identified as HSS using a PRA approach. However, the NEI 00-04 approach using the SPCL would identify them as HSS regardless of their capacity, frequency of challenge or level of functional diversity.

The [LICENSEE] risk management program ensures that future changes to the plant will be evaluated to determine their impact on the SMA and risk categorization process.

Option 3

The [PLANT NAME] categorization process for seismic hazards will use a peer reviewed plant-specific seismic PRA model. The [LICENSEE] risk management process ensures that the PRA model used in this application reflects the as-built and as-operated plant for each of the [PLANT] units. No plant specific approaches were utilized in development of the seismic hazards PRA model. Updates to seismic hazard curves will be reflected in the PRA used for the categorization in accordance with the PRA model maintenance process.

If Addendum B is credited use the following paragraph
Since ASME/ANS PRA Standard Addendum B is credited for review or disposition of peer review findings, the following issues in NRC letter ML111720067 are dispositioned as follows:

The seismic analysis is based on the latest available hazard curves. Plant specific approaches to seismic hazards are described as follows:

[Summarize any plant-specific approaches used]

Attachment X at the end of this enclosure identifies the applicable Seismic PRA model.

3.2.4 Other External Hazards

Option 1 - for screened hazards

The [PLANT NAME] categorization process will use screening results from the Individual Plant Evaluation-External Events (IPEEE) in response to GL 88-20 (Reference 6) for evaluation of safety significance related to the following external hazards:

[List Hazards]

All SSCs credited in other IPEEE external hazards are considered HSS. All other external hazards were screened from applicability to [PLANT/UNIT] per a plant-specific evaluation in accordance with GL 88-20 (Reference 5) and updated to use the criteria in ASME PRA Standard RA-Sa-2009. If any changes are implemented: Changes to the IPEEE analysis or incorporation of plant modifications in the updated IPEEE analysis are summarized as follows:

[Summarize any updates]

Option 2

The [PLANT NAME] categorization process for the following hazard[s] will use a peer reviewed plant-specific screening and PRA models (as applicable) in accordance with the ASME PRA Standard RA-Sa-2009:

[List Hazards]

The [LICENSEE] risk management process ensures that the PRA model used in this application reflects the as-built and as-operated plant for each of the [PLANT] units. Attachment[s] X at the end of this enclosure identifies the applicable other external hazard PRA model[s].

Each external hazard was evaluated with respect to applicability and/or risk. The ASME PRA Standard RA-Sa-2009 outlines preliminary and progressive screening approaches that are acceptable for this task. The screening started with the top approach and
progressed downward until the hazard in question screens with respect to risk. If none of the screening approaches were successful, then the hazard was analyzed using a detailed PRA approach that meets applicable requirements in the ASME PRA Standard RA-Sa-2009. Implicit in these screening criteria (ones that do not present a quantitative measure) is the assumption that successfully meeting a criterion for screening indicates that the bounding CDF from that hazard is considered to be lower than 1E-6/y. Attachment 7 provides a summary of the other external hazards screening results. Attachment 8 provides a summary of the progressive screening approach for external hazards.

3.2.5 Low Power & Shutdown

The [PLANT NAME] categorization process will use the shutdown safety management plan described in NUMARC 91-06, for evaluation of safety significance related to low power and shutdown conditions.
3.2.6 PRA Maintenance and Updates

The [LICENSEE] risk management process ensures that the applicable PRA model(s) used in this application continues to reflect the as-built and as-operated plant for each of the [PLANT] units. The process delineates the responsibilities and guidelines for updating the PRA models, and includes criteria for both regularly scheduled and interim PRA model updates. The process includes provisions for monitoring potential areas affecting the PRA models (e.g., due to changes in the plant, errors or limitations identified in the model, industry operational experience) for assessing the risk impact of unincorporated changes, and for controlling the model and associated computer files. The process will assess the impact of these changes on the plant PRA model in a timely manner but no longer than once every two refueling outages. If there is a significant impact on the PRA model, the SSC categorization will be re-evaluated.

In addition, [LICENSEE] will implement a process that addresses the requirements in NEI 00-04, Section 11, “Program Documentation and Change Control.” The process will review the results of periodic and interim updates of the plant PRA that may affect the results of the categorization process. If the results are affected, adjustments will be made as necessary to the categorization or treatment processes to maintain the validity of the processes. In addition, any PRA model upgrades will be peer reviewed prior to implementing those changes in the PRA model used for categorization.

3.2.7 PRA Uncertainty Evaluations

Uncertainty evaluations associated with any applicable baseline PRA model(s) used in this application were evaluated during the assessment of PRA technical adequacy and confirmed through the self-assessment and peer review processes as discussed in Section 3.3 of this enclosure.

Uncertainty evaluations associated with the risk categorization process are addressed using the processes discussed in Section 8 and in the prescribed sensitivity studies discussed in Section 5 of NEI 00-04.

In the overall risk sensitivity studies [LICENSEE] will utilize a factor of 3 to increase the unavailability or unreliability of LSS components consistent with that approved for Vogtle in Reference 6. Consistent with the NEI 00-04 guidance, [LICENSEE] will perform both an initial sensitivity study and a cumulative sensitivity study. The initial sensitivity study applies to the system that is being categorized. In the cumulative sensitivity study, the failure probabilities (unreliability and unavailability, as appropriate) of all LSS components modeled in PRAs for all systems that have been categorized are increased by a factor of 3. This sensitivity study together with the periodic review process assures that the potential cumulative risk increase from the categorization is maintained acceptably low. The performance monitoring process monitors the component performance to ensure that potential increases in failure rates of
categorized components are detected and addressed before reaching the rate assumed in the sensitivity study.

Sources of model uncertainty and related assumptions have been identified for the [PLANT] PRA models using the guidance of NUREG-1855 (Reference 8) and EPRI TR-1016737 Treatment of Parameter and Model Uncertainty for Probabilistic Risk Assessment (Reference 9).

The detailed process of identifying, characterizing and qualitative screening of model uncertainties is found in Section 5.3 of NUREG-1855 and Section 3.1.1 of EPRI TR-1016737. The process in these references was mostly developed to evaluate the uncertainties associated with the internal events PRA model; however, the approach can be applied to other types of hazard groups.

The list of assumptions and sources of uncertainty were reviewed to identify those which would be significant for the evaluation of this application. If the [PLANT] PRA model used a non-conservative treatment, or methods which are not commonly accepted, the underlying assumption or source of uncertainty was reviewed to determine its impact on this application. Only those assumptions or sources of uncertainty that could significantly impact the configuration risk calculations were considered key for this application.

Key [PLANT] PRA model specific assumptions and sources of uncertainty for this application are identified and dispositioned and is available for NRC audit. The conclusion of this review is that no additional sensitivity analyses are required to address [PLANT] PRA model specific assumptions or sources of uncertainty except for the following:

- Perform a sensitivity increasing all the seismic PRA human events failures (HEFs) derived from the internal events PRA model by a factor of 3 to address the uncertainty associated with main control room actions that might take longer in a seismic event versus an internal initiating event.
3.3 PRA REVIEW PROCESS RESULTS (10 CFR 50.69(b)(2)(III))

The PRA model[s] described in Section 3.2 has been assessed against RG 1.200, “An Approach for Determining the Technical Adequacy of Probabilistic Risk Assessment Results for Risk-Informed Activities,” Revision 2 (Reference 7) consistent with NRC RIS 2007-06. Specifically, the model was subject to a self-assessment and a peer review conducted in [Month Year]. A summary disposition of open findings are provided in Section 3.3.2. Closed findings were closed using an NRC accepted closure process which is available for NRC audit.

Attachment X provides a summary of:

- Open items and disposition from the [PLANT NAME] RG 1.200 self-assessment.
- Open findings and disposition of the [PLANT NAME] peer review. This also includes those open peer review findings that are requested the NRC review for closure as part of this LAR.
- Identification of and basis for any sensitivity analysis needed to address open findings.

If Peer Review was not completed against RG 1.200 Rev 2:

Since the peer review of the Internal Events PRA model was performed prior to the publication of RG 1.200 Rev 2, a self-assessment was conducted to assess the differences between RG 1.200 Rev 2 and RG 1.200 Rev X. That assessment confirmed that the PRA model meets the requirements of RG 1.200 Rev 2. Results from that assessment are documented and are available for NRC audit.

OR

The Internal Events PRA model was peer reviewed in [YEAR] by the [PWR or BWR] Owners Group (PWROG or BWROG) prior to the issuance of Regulatory Guide 1.200. As a result, a self-assessment was conducted by [LICENSEE] of the Internal Events PRA model in accordance with Appendix B of RG 1.200 Revision 2 (Reference X) to address the PRA technical adequacy requirements not considered in the [YEAR] peer review. The Internal Events PRA technical adequacy (including the [YEAR] peer review and self-assessment results) has previously been reviewed by the NRC in previous requests to [describe application] (Reference XX). No PRA upgrades as defined by the ASME PRA Standard RA-SA-2009 (Reference 10) have occurred to the Internal Events PRA model since conduct of the [PWROG or BWROG] peer review in [YEAR].

The table[s] identified above demonstrate that the PRA is of sufficient quality and level of detail to support the categorization process, and has been subjected to a peer review process assessed against a standard or set of acceptance criteria that is endorsed by the NRC as required 10 CFR 50.69(c)(1)(i).
3.4 RISK EVALUATIONS (10 CFR 50.69(b)(2)(IV))

The [PLANT NAME] 10 CFR 50.69 categorization process will implement the guidance in NEI 00-04. The overall risk evaluation process described in the NEI guidance addresses both known degradation mechanisms and common cause interactions, and meets the requirements of §50.69(b)(2)(iv). Sensitivity studies described in NEI 00-04 Section 8 will be used to confirm that the categorization process results in acceptably small increases to core damage frequency (CDF) and large early release frequency (LERF). The failure rates for equipment and initiating event frequencies used in the PRA include the quantifiable impacts from known degradation mechanisms, as well as other mechanisms (e.g., design errors, manufacturing deficiencies, human errors, etc.). Subsequent performance monitoring and PRA updates required by the rule will continue to capture this data, and provide timely insights into the need to account for any important new degradation mechanisms.
4 REGULATORY EVALUATION

4.1 APPLICABLE REGULATORY REQUIREMENTS/CRITERIA

The following NRC requirements and guidance documents are applicable to the proposed change.

The proposed change is consistent with the applicable regulations and regulatory guidance.

4.2 NO SIGNIFICANT HAZARDS CONSIDERATION ANALYSIS

[Licensee] proposes to modify the licensing basis to allow for the voluntary implementation of the provisions of Title 10 of the Code of Federal Regulations (10 CFR), Part 50.69, “Risk-Informed Categorization and Treatment of Structures, Systems, and Components (SSCs) for Nuclear Power Plants.” The provisions of 10 CFR 50.69 allow adjustment of the scope of equipment subject to special treatment controls (e.g., quality assurance, testing, inspection, condition monitoring, assessment, and evaluation). For equipment determined to be of low safety significance, alternative treatment requirements can be implemented in accordance with this regulation. For equipment determined to be of high safety significance, requirements will not be changed or will be enhanced. This allows improved focus on equipment that has safety significance resulting in improved plant safety.

[Licensee] has evaluated whether or not a significant hazards consideration is involved with the proposed amendment(s) by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of amendment," as discussed below:

1. Does the proposed change involve a significant increase in the probability or consequences of an accident previously evaluated?
Response: No.

The proposed change will permit the use of a risk-informed categorization process to modify the scope of SSCs subject to NRC special treatment requirements and to implement alternative treatments per the regulations. The process used to evaluate SSCs for changes to NRC special treatment requirements and the use of alternative requirements ensures the ability of the SSCs to perform their design function. The potential change to special treatment requirements does not change the design and operation of the SSCs. As a result, the proposed change does not significantly affect any initiators to accidents previously evaluated or the ability to mitigate any accidents previously evaluated. The consequences of the accidents previously evaluated are not affected because the mitigation functions performed by the SSCs assumed in the safety analysis are not being modified. The SSCs required to safely shut down the reactor and maintain it in a safe shutdown condition following an accident will continue to perform their design functions.

Therefore, the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Does the proposed change create the possibility of a new or different kind of accident from any accident previously evaluated?

Response: No.

The proposed change will permit the use of a risk-informed categorization process to modify the scope of SSCs subject to NRC special treatment requirements and to implement alternative treatments per the regulations. The proposed change does not change the functional requirements, configuration, or method of operation of any SSC. Under the proposed change, no additional plant equipment will be installed.

Therefore, the proposed change does not create the possibility of a new or different kind of accident from any accident previously evaluated.

3. Does the proposed change involve a significant reduction in a margin of safety?

Response: No.

The proposed change will permit the use of a risk-informed categorization process to modify the scope of SSCs subject to NRC special treatment requirements and to implement alternative treatments per the regulations. The proposed change does not affect any Safety Limits or operating parameters used to establish the safety margin. The safety margins included in analyses of accidents are not affected by the proposed change. The regulation requires that there be no significant effect on plant risk due to any change to the special
treatment requirements for SSCs and that the SSCs continue to be capable of performing their design basis functions, as well as to perform any beyond design basis functions consistent with the categorization process and results. Therefore, the proposed change does not involve a significant reduction in a margin of safety.

Based on the above, [LICENSEE] concludes that the proposed change presents no significant hazards consideration under the standards set forth in 10 CFR 50.92(c), and, accordingly, a finding of "no significant hazards consideration" is justified.

4.3 CONCLUSIONS

In conclusion, based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission’s regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.
5 ENVIRONMENTAL CONSIDERATION

A review has determined that the proposed amendment would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10 CFR 20, or would change an inspection or surveillance requirement. However, the proposed amendment does not involve (i) a significant hazards consideration, (ii) a significant change in the types or a significant increase in the amounts of any effluents that may be released offsite, or (iii) a significant increase in individual or cumulative occupational radiation exposure. Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(9). Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the proposed amendment.
6 REFERENCES

5. ANO SER Arkansas Nuclear One, Unit 2 - Approval of Request for Alternative AN02-R&R-004, Revision 1, Request to Use Risk-Informed Safety Classification and Treatment for Repair/Replacement Activities in Class 2 and 3 Moderate and High Energy Systems (TAC NO. MD5250) (ML090930246), April 22, 2009.

8. NUREG-1855, Guidance on the Treatment of Uncertainties Associated with PRAs in Risk-Informed Decision Making, March 2009

11. Add any references to NRC review of plant specific FIVE, SMA, or IPEEE screening for Section 3.1.1

12. Add any optional references on previously approved applications with NRC review of PRA models for Section 3.1.1.
Attachment 1: List of Categorization Prerequisites

Licensing Note: The need for a License Condition and/or NRC Commitments should be reviewed by the Licensing Department. In general, plants should identify the need for plant modifications to meet the CDF and LERF risk values in RG 1.174 as a License Condition and the need for site procedures to address the items listed below as an NRC Commitment. However, the final decision is left to each individual plant.

The PRA model to be used for categorization credits the following modifications to achieve an overall CDF and LERF consistent with NRC Regulatory Guide 1.174 risk limits. Use of the categorization process on a plant system will only occur after the modifications are completed.

1. [Describe modification]

2. Install fuses in non-class DC motor circuits to prevent secondary fires due to multiple fire induced faults. This modification is complete in Unit 1, and is scheduled to be implemented in Unit 3 in the fall 2016 refueling outage and Unit 2 in the spring 2017 refueling outage.

[LICENSEE] will establish procedure(s) prior to the use of the categorization process on a plant system. The procedure(s) will contain the elements/steps listed below.

- Integrated Decision-making Panel (IDP) member qualification requirements

- Qualitative assessment of system functions. System functions are qualitatively categorized as preliminary HSS or LSS based on the seven questions in Section 9 of NEI 00-04 (see Section 3.2). Any component supporting an HSS function is categorized as preliminary HSS. Components supporting, an LSS function are categorized as preliminary LSS.

- Component safety significance assessment. Safety significance of active components is assessed through a combination of PRA and non-PRA methods, covering all hazards. Safety significance of passive components is assessed using a methodology for passive components.

- Assessment of defense in depth (DID) and safety margin. Components that are categorized as preliminary LSS are evaluated for their role in providing defense-in-depth and safety margin and, if appropriate, upgraded to HSS.

- Review by the Integrated Decision-making Panel. The categorization results are presented to the IDP for review and approval. The IDP reviews the categorization results and makes the final determination on the safety significance of system functions and components.
• Risk sensitivity study. For PRA-modeled components, an overall risk sensitivity study is used to confirm that the population of preliminary LSS components results in acceptably small increases to core damage frequency (CDF) and large early release frequency (LERF) and meets the acceptance guidelines of RG 1.174.

• Periodic reviews are performed to ensure continued categorization validity and acceptable performance for those SSCs that have been categorized.

• Documentation requirements per Section 3.1.1
Attachment 2: Description of PRA Models Used in Categorization

<table>
<thead>
<tr>
<th>Units</th>
<th>Model</th>
<th>Baseline CDF</th>
<th>Baseline LERF</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[reference, review, date]</td>
<td>Core Damage Frequency</td>
<td>Large Early Release Frequency</td>
<td>[applicable prior approvals]</td>
</tr>
<tr>
<td></td>
<td>BB06F dated October 10, 2014</td>
<td></td>
<td></td>
<td>[one model applicable to all units]</td>
</tr>
<tr>
<td>2</td>
<td>Peer Reviewed Against RG 1.200 R2 on June 9, 2015 BB07F dated October 10, 2014</td>
<td>1.2E-05</td>
<td>1.7E-06</td>
<td>NRC reviewed model for risk informed completion times (MLXXXXXXXX)</td>
</tr>
<tr>
<td>3</td>
<td>Peer Reviewed Against RG 1.200 R2 on June 9, 2015</td>
<td>1.2E-05</td>
<td>1.7E-06</td>
<td>NRC reviewed model for risk informed completion times (MLXXXXXXXX)</td>
</tr>
</tbody>
</table>
Attachment 3: Updates to Fire Induced Vulnerability Evaluation (FIVE)

<table>
<thead>
<tr>
<th>Equipment/Function Credited</th>
<th>Description of Change</th>
<th>Impacts/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Driven Aux Feed Pump</td>
<td>Diesel driven pump replaced with steam driven pump</td>
<td>Steam driven pump is now credited mitigation equipment and is retained as safety significant</td>
</tr>
</tbody>
</table>
Attachment 4: Updates to Seismic SPCL

<table>
<thead>
<tr>
<th>Equipment/Function Credited</th>
<th>Description of Change</th>
<th>Impacts/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux feed water cooling inlet AOV</td>
<td>Valve internals removed</td>
<td>Valve is no longer credited on the seismic SCPL</td>
</tr>
</tbody>
</table>
Attachment 5: Disposition and Resolution of Open Peer Review Findings and Self-Assessment Open Items

<table>
<thead>
<tr>
<th>Finding Number</th>
<th>Supporting Requirement(s)</th>
<th>Capability Category (CC)</th>
<th>Description</th>
<th>Disposition for 50.69 [And for Other Applications]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide identifier from Peer Review Report</td>
<td>ASME/ANS Identifier</td>
<td>Capability Category identified in peer review report</td>
<td>Write up of finding from peer review report</td>
<td>Identify whether the finding was resolved. Request NRC’s review for closure if needed. Provide a description of the disposition of the finding. State that this disposition or closure is appropriate for all identified applications or specify which applications.</td>
</tr>
<tr>
<td>HR-G6-01</td>
<td>HR-G6</td>
<td>CC-I/II/III Not Met</td>
<td>Check of consistency and review for reasonableness is missing in the Revision 4 updated HRA draft and the prior revision document information related to these items is not appropriate to use in light of the updates performed and changes to the results. Section 8 includes a table of human failure events (HFEs) and human error probabilities (HEPs) but does not include HEP reasonableness check, as is documented in Section 8.3 of the November 2005 HRA update for Revision 3.</td>
<td>This F&O was resolved. It is requested that NRC review the resolution of this finding for closure against the base model.</td>
</tr>
<tr>
<td>All HRAs were reviewed and were either determined to be reasonable or have been revised. This review is documented in Section 8.2.2 of the internal events PRA calculation (Reference X).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Finding Number

<table>
<thead>
<tr>
<th>Finding Number</th>
<th>Supporting Requirement(s)</th>
<th>Capability Category (CC)</th>
<th>Description</th>
<th>Disposition for 50.69 [And for Other Applications]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-C2-02</td>
<td>CS-C2</td>
<td>CC I/II/III MET</td>
<td>A summary of the fire zone nomenclature (e.g. used in cable routing) and table associating fire zones with physical analysis units and referring to appropriate plant drawings and site maps would simplify review. Information is available but scattered, complicating review. Condense the information from the FSAR Chapter 9A (Fire Hazards Analysis) into a table. Add nomenclature description and appropriate plant drawings and site maps.</td>
<td>This F&O refers to a documentation enhancement. The resolution of this F&O has no impact on any technical element of the analysis.</td>
</tr>
<tr>
<td>QU-F2-01</td>
<td>QU-F2</td>
<td>CC-I/II/III Not Met</td>
<td>Asymmetry analysis was not performed in the quantification analysis. Insights from alternate alignments may not be adequately categorized or identified.</td>
<td>Alternate alignment runs were performed to identify if uncertainty or risk insights would be affected as a result of an assumed alignment. This included a review of the FV and RAW importance measures that will be used for the categorization of SSCs. It was determined that alternate alignments would no impact the categorization of any SSCs. Attachment 1 provides more details of the alternate alignment and sensitivity cases that were performed.</td>
</tr>
</tbody>
</table>
Attachment 6: External Hazards Screening

<table>
<thead>
<tr>
<th>External Hazard</th>
<th>Screened? (Y/N)</th>
<th>Screening Criterion (Note a)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Impact</td>
<td>Y</td>
<td>PS2</td>
<td>Airport hazard meets 1975 SRP requirements. Additionally, airways hazard bounding analysis per NUREG-1855 is < 1E-6/y.</td>
</tr>
<tr>
<td>Avalanche</td>
<td>Y</td>
<td>C3</td>
<td>Not applicable to the site because of climate and topography.</td>
</tr>
<tr>
<td>Biological Event</td>
<td>Y</td>
<td>C3, C5</td>
<td>Sudden influxes not applicable to the plant design (closed loop systems for ECWS and CWS). Slowly developing growth can be detected and mitigated by surveillance.</td>
</tr>
<tr>
<td>Coastal Erosion</td>
<td>Y</td>
<td>C3</td>
<td>Not applicable to the site because of location.</td>
</tr>
<tr>
<td>Drought</td>
<td>Y</td>
<td>C5</td>
<td>Plant design eliminates drought as a concern and event is slowly developing.</td>
</tr>
<tr>
<td>External Flooding</td>
<td>Y</td>
<td>PS2</td>
<td>Plant design meets 1975 SRP requirements.</td>
</tr>
<tr>
<td>Extreme Wind or Tornado</td>
<td>Y</td>
<td>PS2</td>
<td>The plant design basis tornado has a frequency < 1E-7/y. The spray pond nozzles (not protected against missiles) have a bounding median risk < 1E-7/y.</td>
</tr>
<tr>
<td>Fog</td>
<td>Y</td>
<td>C1</td>
<td>Limited occurrence because of arid climate and negligible impact on the plant.</td>
</tr>
<tr>
<td>Forest or Range Fire</td>
<td>Y</td>
<td>C3</td>
<td>Not applicable to the site because of limited vegetation.</td>
</tr>
<tr>
<td>Frost</td>
<td>Y</td>
<td>C1</td>
<td>Limited occurrence because of arid climate.</td>
</tr>
<tr>
<td>Hail</td>
<td>Y</td>
<td>C1, C4</td>
<td>Limited occurrence and bounded by other events for which the plant is designed. Flooding impacts covered under Intense Precipitation.</td>
</tr>
<tr>
<td>External Hazard</td>
<td>Screened? (Y/N)</td>
<td>Screening Criterion (Note a)</td>
<td>Comment</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>High Summer Temperature</td>
<td>Y</td>
<td>C1</td>
<td>Plant is designed for this hazard. Associated plant trips have not occurred and are not expected.</td>
</tr>
<tr>
<td>High Tide, Lake Level, or River Stage</td>
<td>Y</td>
<td>C3</td>
<td>Not applicable to the site because of location.</td>
</tr>
<tr>
<td>Hurricane</td>
<td>Y</td>
<td>C4</td>
<td>Covered under Extreme Wind or Tornado and Intense Precipitation.</td>
</tr>
<tr>
<td>Ice Cover</td>
<td>Y</td>
<td>C3 C1</td>
<td>Ice blockage causing flooding is not applicable to the site because of location (no nearby rivers and climate conditions). Plant is designed for freezing temperatures, which are infrequent and short in duration.</td>
</tr>
<tr>
<td>Industrial or Military Facility Accident</td>
<td>Y</td>
<td>PS2</td>
<td>Explosive hazard impacts and control room habitability impacts meet the 1975 SRP requirements (RGs 1.91 and 1.78).</td>
</tr>
<tr>
<td>Internal Flooding</td>
<td>N</td>
<td>None</td>
<td>PRAs addressing internal flooding have indicated this hazard typically results in CDFs ≥ 1E-6/y. Also, the ASME/ANS PRA Standard requires a detailed PRA for this hazard which is addressed in the [PLANT/UNIT] Internal Flooding PRA.</td>
</tr>
<tr>
<td>Internal Fire</td>
<td>N</td>
<td>None</td>
<td>PRAs addressing internal fire have indicated this hazard typically results in CDFs ≥ 1E-6/y. Also, the ASME/ANS PRA Standard requires a detailed PRA for this hazard which is addressed in the [PLANT/UNIT] Internal Fire PRA.</td>
</tr>
<tr>
<td>Landslide</td>
<td>Y</td>
<td>C3</td>
<td>Not applicable to the site because of topography.</td>
</tr>
<tr>
<td>Lightning</td>
<td>Y</td>
<td>C1</td>
<td>Lightning strikes causing loss of offsite power or turbine trip are contributors to the initiating event frequencies for these events. However, other causes are also included. The impacts are no greater than already modeled in the internal events PRA.</td>
</tr>
<tr>
<td>External Hazard</td>
<td>Screened? (Y/N)</td>
<td>Screening Criterion (Note a)</td>
<td>Comment</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Low Lake Level or River Stage</td>
<td>Y</td>
<td>C3</td>
<td>Not applicable to the site because of location.</td>
</tr>
<tr>
<td>Low Winter Temperature</td>
<td>Y</td>
<td>C1 C5</td>
<td>Extended freezing temperatures are rare, the plant is designed for such events, and their impacts are slow to develop.</td>
</tr>
<tr>
<td>Meteorite or Satellite Impact</td>
<td>Y</td>
<td>PS4</td>
<td>The frequency of meteorites greater than 100 lb striking the plant is around 1E-8/y and corresponding satellite impacts is around 2E-9/y.</td>
</tr>
<tr>
<td>Pipeline Accident</td>
<td>Y</td>
<td>C3</td>
<td>Pipelines are not close enough to significantly impact plant structures.</td>
</tr>
<tr>
<td>Release of Chemicals in Onsite Storage</td>
<td>Y</td>
<td>PS2</td>
<td>Plant storage of chemicals meets 1975 SRP requirements.</td>
</tr>
<tr>
<td>River Diversion</td>
<td>Y</td>
<td>C3</td>
<td>Not applicable to the site because of location.</td>
</tr>
<tr>
<td>Sand or Dust Storm</td>
<td>Y</td>
<td>C1 C5</td>
<td>The plant is designed for such events. Also, a procedure instructs operators to replace filters before they become inoperable.</td>
</tr>
<tr>
<td>Seiche</td>
<td>Y</td>
<td>C3 C1</td>
<td>Not applicable to the site because of location. Onsite reservoirs and spray ponds designed for seiches.</td>
</tr>
<tr>
<td>Seismic Activity</td>
<td>N</td>
<td>None</td>
<td>PRAs addressing seismic activity have indicated this hazard typically results in CDFs ≥ 1E-6/y. Also, the ASME/ANS PRA Standard requires a detailed PRA or Seismic Margins Assessment (SMA) for this hazard which is addressed in the [PLANT/UNIT] Seismic PRA or SPCL.</td>
</tr>
<tr>
<td>Snow</td>
<td>Y</td>
<td>C1 C4</td>
<td>The event damage potential is less than other events for which the plant is designed. Potential flooding impacts covered under external flooding.</td>
</tr>
<tr>
<td>External Hazard</td>
<td>Screened? (Y/N)</td>
<td>Screening Criterion (Note a)</td>
<td>Comment</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Soil Shrink-Swell Consolidation</td>
<td>Y</td>
<td>C1</td>
<td>The potential for this hazard is low at the site, the plant design considers this hazard, and the hazard is slowly developing and can be mitigated.</td>
</tr>
<tr>
<td>Storm Surge</td>
<td>Y</td>
<td>C3</td>
<td>Not applicable to the site because of location.</td>
</tr>
<tr>
<td>Toxic Gas</td>
<td>Y</td>
<td>C4</td>
<td>Toxic gas covered under release of chemicals in onsite storage, industrial or military facility accident, and transportation accident.</td>
</tr>
<tr>
<td>Transportation Accident</td>
<td>Y</td>
<td>PS2</td>
<td>Potential accidents meet the 1975 SRP requirements. Bounding analyses used for offsite rail shipment of chlorine gas and onsite truck shipment of ammonium hydroxide. Marine accident not applicable to the site because of location. Aviation and pipeline accidents covered under those specific categories.</td>
</tr>
<tr>
<td>Tsunami</td>
<td>Y</td>
<td>C3</td>
<td>Not applicable to the site because of location.</td>
</tr>
<tr>
<td>Turbine-Generated Missiles</td>
<td>Y</td>
<td>PS2</td>
<td>Potential accidents meet the 1975 SRP requirements.</td>
</tr>
<tr>
<td>Volcanic Activity</td>
<td>Y</td>
<td>C3</td>
<td>Not applicable to the site because of location.</td>
</tr>
<tr>
<td>Waves</td>
<td>Y</td>
<td>C3</td>
<td>Waves associated with adjacent large bodies of water are not applicable to the site. Waves associated with external flooding are covered under that hazard.</td>
</tr>
</tbody>
</table>

Note a – See Table 7 for descriptions of the screening criteria.
<table>
<thead>
<tr>
<th>Event Analysis</th>
<th>Criterion</th>
<th>Source</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Preliminary Screening</td>
<td>C1. Event damage potential is < events for which plant is designed.</td>
<td>NUREG/CR-2300 and ASME/ANS Standard RA-Sa-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2. Event has lower mean frequency and no worse consequences than other events analyzed.</td>
<td>NUREG/CR-2300 and ASME/ANS Standard RA-Sa-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3. Event cannot occur close enough to the plant to affect it.</td>
<td>NUREG/CR-2300 and ASME/ANS Standard RA-Sa-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C4. Event is included in the definition of another event.</td>
<td>NUREG/CR-2300 and ASME/ANS Standard RA-Sa-2009</td>
<td>Not used to screen. Used only to include within another event.</td>
</tr>
<tr>
<td></td>
<td>C5. Event develops slowly, allowing adequate time to eliminate or mitigate the threat.</td>
<td>ASME/ANS Standard</td>
<td></td>
</tr>
<tr>
<td>Progressive Screening</td>
<td>PS1. Design basis hazard cannot cause a core damage accident.</td>
<td>ASME/ANS Standard RA-Sa-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS3. Design basis event mean frequency is < 1E-5/y and the mean conditional core damage probability is < 0.1.</td>
<td>NUREG-1407 as modified in ASME/ANS Standard RA-Sa-2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS4. Bounding mean CDF is < 1E-6/y.</td>
<td>NUREG-1407 and ASME/ANS Standard RA-Sa-2009</td>
<td></td>
</tr>
<tr>
<td>Detailed PRA</td>
<td>Screening not successful. PRA needs to meet requirements in the ASME/ANS PRA Standard.</td>
<td>NUREG-1407 and ASME/ANS Standard RA-Sa-2009</td>
<td></td>
</tr>
</tbody>
</table>
1. PURPOSE

The purpose of the Industry 10 CFR 50.69 LAR Coordinating Committee is to implement a coordinated approach to drive the scheduling, development, and approval of 10 CFR 50.69 License Amendment Requests (LARs) in an efficient and timely manner. With a potential for a large number of 10 CFR 50.69 LARs to be submitted in the next few years, the committee will work directly with the Nuclear Regulatory Commission (NRC) to support prioritization of the submittals based on their resource capabilities and work to eliminate technical obstacles for the timeliness of their review. This committee will conduct reviews of licensee LARs and ensure they are submitted to the NRC consistent with the industry LAR template. When deviations are necessary, the committee will review the licensee’s approach, make recommendations, and support the interactions with the NRC and the licensee as necessary. Once the NRC review process begins, the committee will support licensee responses to Requests for Additional Information (RAIs) and develop generic responses to reduce the likelihood of unintended precedence. Though the implementation of this approach may increase the initial amount of licensee time required to develop LARs and respond to RAIs in coordination with the rest of the industry, it is expected that this unified approach will minimize the overall NRC review time and maximize the number of approvals issued in a year.

2. OBJECTIVES

The following committee objectives intend to support the goal of reducing the overall time to develop 10 CFR 50.69 LARs and gain approval of the NRC:

- **Objective 1:** Promote an efficient LAR submittal scheduling structure (e.g., staggered schedule) and track NRC review time
- **Objective 2:** Ensure content and format of LAR submittals are consistent across industry through the implementation of the industry LAR template
- **Objective 3:** Work with licensees to identify and communicate adequacy of approaches taken to address deviations or unique aspects of their submittal
- **Objective 4:** Develop industry positions on RAIs or other technical issues identified in NRC reviews that are generic to the rest of the industry,
- **Objective 5:** Incorporate any lessons learned in the coordination process or into the content of industry LAR templates
3. MEMBERSHIP COMPOSITION

As this committee intends to represent utility licensees, the composition of its membership is important. The membership should primarily consist of utility representatives who can either provide a licensing or a risk perspective in supporting LAR submittals. The membership of this committee should include the following:

<table>
<thead>
<tr>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Nuclear Energy Institute (NEI) representative</td>
<td>The NEI representative will be the overall lead responsible for developing consensus amongst the committee and determining recommendations for licensees based on committee direction. In addition, the NEI lead will be responsible for the overall organization and logistics of the committee.</td>
</tr>
<tr>
<td>One primary representative from each utility with a site that has submitted or is intending to submit within the next six (6) months.</td>
<td>Each primary representative is responsible for sharing the requested information from their sites for the committee to review. The representative would also provide support for review of other licensee submittals. It is desired that sites that gain NRC approval of their LARs maintain their support of the committee for at least six (6) more months to provide insights and lessons learned for future licensee submittals.</td>
</tr>
</tbody>
</table>

The membership can be augmented either temporarily or permanently with additional non-member representatives that are needed for specific expertise and are committed to performing the support activities of the committee:

- Additional representatives from the sites that have submitted or intend to submit in the near term
- Representatives from sites looking to submit longer term (i.e., greater than six (6) months)
- Representatives from other industry groups (e.g., PWROG, BWROG, EPRI)
- Contractors or suppliers providing expertise in areas related to the LAR that is needed by the committee
4. OVERALL PROCESS AND RESPONSIBILITIES

The process that the committee implements is intended to provide recommendations to licensees on their LAR submittals to support an efficient NRC review. Though licensees are not required to accept these recommendations, it is encouraged that the industry work collaboratively and stay as consistent as possible. Licensees participating in the committee are requested to provide the requested information to support the process and provide the same level of support for other site LARs as they expect to receive on their LAR. Frequency of meetings and other interactions should be determined and based on the planned submittal dates. The following are the general steps that the committee and the licensees represented on the committee should follow:

1. Licensees intending to submit a LAR for 10 CFR 50.69 should contact the NEI lead of the committee and provide the estimated submittal date as well as the name of a primary representative for their submittal(s).

2. Licensees should provide the NRC with the same planned submittal date that was provided to the committee. Licensees should communicate any changes to these dates to both the committee and the NRC.

3. The committee should maintain an industry schedule and hold discussions with the NRC on their resource capabilities to support the planned LARs. Based on these discussions, the committee will make recommendations to licensees on their planned submittal dates to best support NRC resources.

4. Licensees should inform the NEI lead and the rest of the committee of any planned interactions with the NRC and invite them to participate and support those interactions as needed. If a pre-submittal meeting is scheduled, the committee should provide at least one representative to support. Alternatively, pre-submittal meetings and other interactions can be coordinated by the committee for multiple sites.

5. The committee should maintain the industry LAR template and update it with any necessary changes. Licensees should develop their LAR consistent with the industry LAR template.

6. Licensees should provide their completed draft LAR submittals to the NEI lead to distribute to the committee for their review. This can be done in parallel with any internal reviews by the site to allow time for review but avoid any unnecessary delay. The committee should be allowed at least two weeks for their review.

7. All committee email communications should include the NEI lead.

8. Licensees should identify deviations from the template to the committee with any supporting information on the reasoning for the deviation. Additionally, licensees should highlight to the committee any site-specific areas that may complicate the review of the LAR.

9. The committee members should review each LAR focusing on deviations from the template and the areas identified by the licensee that may cause issues during the review process. The committee should provide any recommendations on how to enhance the LAR or ways to make it more
consistent with other submittals. Each member should provide comments and recommendations within two weeks, though additional time may be required when multiple submittals are being provided in parallel. Comments and recommendations should be sent to the NEI lead who will compile and distribute to the committee for discussion. The NEI lead will also be responsible for issuing the final comments and recommendations to the licensee.

10. Licensees should incorporate the recommendations provided by the committee to the best of their ability and notify the committee when they submit their LAR to the NRC. The committee should be continued to be informed of any interactions with the NRC and should identify support for each interaction.

11. Once licensees begin receiving inquiries and RAIs from the NRC, they should forward them to the NEI lead of the committee for distribution and review. Licensees should identify any RAIs that they feel are generic and for which the committee should develop a generic response for the industry.

12. The committee should collect, review, and track licensee RAIs and identify any that are appropriate for a generic response. Generic responses should be developed and communicated through the licensee response process and, in some cases, communicated directly to the NRC by the committee. The committee should support licensees in their interactions regarding RAIs as well as incorporate any generic responses into the LAR template for future submittals.

13. Issues which cannot be resolved between the NRC and licensees should be elevated to both the Delivering the Nuclear Promise (DNP) Risk Informed Operations (RIO) Team as well as the Industry Risk Informed Steering Committee (RISC).

14. Licensees should notify the committee when they receive NRC approval of their LAR. Licensees should maintain their support of the committee for six (6) more months to provide insights and lessons learned for future licensee submittals.